当前位置:首页 > 教学资料 > 教学计划

初一上册数学教学计划

时间:2024-07-12 11:47:24
【精品】初一上册数学教学计划四篇

【精品】初一上册数学教学计划四篇

日子在弹指一挥间就毫无声息的流逝,相信大家对即将到来的工作生活满心期待吧!我们要好好计划今后的教育教学方法。你知道领导想要看到的是什么样的教学总结吗?以下是小编帮大家整理的初一上册数学教学计划4篇,供大家参考借鉴,希望可以帮助到有需要的朋友。

初一上册数学教学计划 篇1

一、学生现状分析

本学期我担任初一3、4两个班的数学课,两个班级共有学生114人。从入学成绩上看其中优等生有21人,占总数的18%,学困生占总数的27%。通过一周的学习观察,大部分学生无好的学习习惯,运算能力、基础知识掌握较差,尖子生逻辑思维能力也有待提高。

二、分析原因

1、对数学无兴趣,基础薄弱

2、课上听课精力不集中,分不清重维点

3、尖子生辨析能力差,灵活应用能力有待提高

4、作业不独立完成,抄袭现象严重

5、学习方法过于死板

三、措施

1、增强上课技能,提高数学兴趣使讲课清晰化、条理化、准确化、情感化、生动化做到层次分明,言简意赅,深入浅出。课堂上特别注意调动学生的积极性,加强 师生交流充分发挥学生的主体作用。

2、增大课下辅导,作业检查力度,帮助学生养成一个良好的学习习惯,对作业中出现的抄袭、乱不准确等现象严加惩处,并提高课后习题的质量,逐步提高学生的应变能力。

3、注意每一个层次学生的学习需求和学后能力。让各个层次的学生都得到提高,主要是课堂上注重分层教学,对尖子生学困生的问题进行实质性处理。作业中分层布置,让每个学生都能自己独立完成作业,课下任务分层类子生以提高能力为主学困生以夯实基础为主。

总之,在本学期中我力争让每一个学生都爱学数学,会学数学,每个学一的数学成绩都有所提高。

初一上册数学教学计划 篇2

一、基本情况分析:

七年级入学了,学生总体情况如下:七年级(1)(5)班学生:78人,通过入学考试发现,学生的数学成绩参差不齐,总体上看,学生的数学成绩较差,在学生的数学知识上看,小学学过的四则混合运算,相应的较为简单的应用题,对图形、图形的面积、体积,数据的收集与整理上有了初步的认识,无论是代数的知识,图形的知识都有待于进一步系统化,理论化,这就是初中的内容,本学期将要学习有关代数的初步知识,对图形的进一步认识;在数学的思维上,学生正处于形象思维向逻辑抽象思维的转变期,这期间,结合教学,让学生适当思考部分有利于思维的题,无疑是对学生终身有用的;在学习习惯上,部分小学的不良习惯要得到纠正,良好的习惯要得到巩固,如独立思考,认真进行总结,及时改正作业,超前学习等,都应得到强化;通过前面几天的观察,大部分学生对数学是很感兴趣的,尽管成绩较差,但仍有部分学生对数学严重丧失信心,因此要给这部分学生树信心,鼓干劲;对于小学升入初中,学生有一个适应的过程,刚开始起点宜低,讲解宜慢,使学生迅速适应初中生活,同时,对于学习新教材,学生仍然感到有一定的困难,对于我自己,也有一个研究新教材,新标准,扩充教材的过程,对于我仍然是一个挑战。

二、教材分析:

第一章丰富的图形世界

这部分的主要内容是通过生活中熟悉的图形展开研究,包括图形的形状、构成、性质、图形的展开与折叠,图形的截面,图形的方向视图等。

这部分从生活中常见的立体图形入手,使学生在丰富的现实情境中、在展开与折叠等数学活动过程中,认识常见几何体及点、线、面的一些性质;再通过展开与折叠、切截,从不同方向看等活动,在平面图形与几何体的转换中发展学生的空间观念;最后,由立体图形转向平面图形,在丰富的活动中使学生认识一些平面图形的简单性质。

展开与折叠、切截,从不同方向看,是认识到事物的重要手段,在学习过程中,要亲自去展开与折叠、切截,亲自去观察、思考,并与同伴交流,从而积累有关图形的经验,发展空间观念。

第二章有理数及其运算

这部分的主要内容是有理数的概念及其加减法、乘除法、和乘方运算,以及使用计算器作简单的有理数运算。这部分内容在设计上是从实际问题情境与已有的小学数学知识基础着手,提出问题,引导学生自主地发现新的有理数的一些概念,探索有理数的数量关系及其规律。在方法上采用了由具体特殊的现象发现一般规律,使学生初步体验从实际问题抽象出数学模型的思想方法,初步学会表示数量关系的一些数学工具以及解决一些简单问题的方法。同时适当控制练习和习题的难度,引人计算器,避免不必要的烦琐的计算。这部分的内容不仅是为下一部分内容“整式的加减”的学习作好一个铺垫,而且是整个初中数学“数与代数”内容中关于“数”的学习的重要基础,通过这部分内容的学习,可以有助于学生更好地学习“数与代数”、“空间与图形”、“统计与概率”等内容,可以说这部分内容是整个初中数学学习的重要基础,因此这部分内容是本学期教学内容的一个重点。

第三章整式及其加减

列代数式,单项式及其有关概念,多项式及其有关概念,去括号法则,整式的加减,合并同类项,求代数式的值。重点:去括号,合并同类项。难点:对单项式系数,次数,多项式次数的理解与应用。整式是简单代数式的一种形式,在日常生活中经常要用整式表示有关的量,体现了变量与常量之间的关系,加深了对数的理解。本章中列代数式,去括号及合并同类项是后面学习一元一次方程的基础,求代数式的值在中考命题中占有重要的地位。

第四章基本平面图形

这部分的主要内容是图形的初步认识,从学生生活周围熟悉的立体图形入手,使学生队物体形状的认识由模糊、感性的上升到抽象的数学图形,学会画简单的立体图形,通过立体图形的展开图介绍立体图形与平面图形的关系,从而引人组成立体图形和平面图形的最基本的图形——点和线的介绍,进而以此为基础介绍角、相交线、平行线的有关概念与性质以及平行线的识别方法,并介绍这些知识的一些初步应用。

这部分内容在设计上是以学生在小学所学的“空间与图形”知识为基础,通过大量丰富的立体、平面图形,直观感知、操作确认、实践活动,进一步丰富学生对立体图形和平面图形的认识与感受,探索图形中存在的简单关系,初步体验一些变换的思想,初步学会数学说理。在这部分的内容编排上,以体——面——线——点为序,从学生周围的、熟悉的各种物体入手,直观认识立体图形,然后通过视图与展开图,进一步加以认识,再转到对各种平面图形的认识,对基本图形——点和线的认识,最后认识角、相交线及平行线。让学生在观察中学会分析、在操作中体验变换。这部分内容也是本学期教学内容的又一个重点。

第五章一元一次方程

这部分的主要内容是介绍方程、一元一次方程的相关概念,解方程和运用。

初一上册数学教学计划 篇3

……此处隐藏793个字……,学生对于为什么要讨论这些问题、什么叫“观察下面的乘法算式”、从哪些角度概括算式的'规律等,都会出现困难。为了解决这些困难,教师应该在“如何观察”上加强指导,并明确提出“从符号和绝对值两个角度看规律”的要求。

本课的教学难点是:如何观察给定的乘法算式;从哪些角度概括算式的规律。

四、教学过程设计

问题1 我们知道,有理数分为正数、零、负数三类。按照这种分类,两个有理数的乘法运算会出现哪几种情况?

教师引导学生从有理数分类的角度考虑,区分出有理数乘法的情况有:正数乘正数、正数与0相乘、正数乘负数、负数乘正数、负数乘负数。

设计意图:有理数分为正数、零、负数,由此引出两个有理数相乘的几种情况,既复习有关知识,为下面的教学做好准备,又渗透了分类讨论思想。

问题2 下面从我们熟悉的乘法运算开始。观察下面的乘法算式,你能发现什么规律吗?

3×3=9,

3×2=6,

3×1=3,

3×0=0。

追问1:你认为问题要我们“观察”什么?应该从哪几个角度去观察、发现规律?

如果学生仍然有困难,教师给予提示:

(1)四个算式有什么共同点?——左边都有一个乘数3。

(2)其他两个数有什么变化规律?——随着后一个乘数逐次递减1,积逐次递减3。

设计意图:构造这组有规律的算式,为通过合情推理,得到正数乘负数的法则做准备。通过追问、提示,使学生知道“如何观察”“如何发现规律”。

教师:要使这个规律在引入负数后仍然成立,那么,3×(—1)=—3,这是因为后一乘数从0递减1就是—1,因此积应该从0递减3而得—3。

追问2:根据这个规律,下面的两个积应该是什么?

3×(—2)= ,

3×(—3)= 。

练习:请你模仿上面的过程,自己构造出一组算式,并说出它的变化规律。

设计意图:让学生自主构造算式,加深对运算规律的理解。

追问3:从符号和绝对值两个角度观察这些算式(指师生给出的所有含正数乘负数的算式),你能说说它们的共性吗?

先让学生观察、叙述、补充,教师再总结:都是正数乘负数,积都为负数,积的绝对值等于各乘数绝对值的积。

设计意图:先得到一类情况的结果,降低归纳概括的难度,同时也为后面的学习奠定基础。

问题3观察下列算式,类比上述过程,你又能发现什么规律?

3×3=9,

2×3=6,

1×3=3,

0×3=0。

鼓励学生模仿正数乘负数的过程,自己独立得出规律。

设计意图:为得到负数乘正数的结论做准备;培养学生的模仿、概括的能力。

追问1:要使这个规律在引入负数后仍然成立,你认为下面的空格应各填什么数?

(—1)×3= ,

(—2)×3= ,

(—3)×3= 。

练习:请你模仿上面的过程,自己构造出一组算式,并说出它的变化规律。

追问2 :类比正数乘负数规律的归纳过程,从符号和绝对值两个角度观察这些算式(指师生给出的所有含正数乘负数的算式),你能说说它们的共性吗?

先让学生观察、叙述、补充,教师再总结:都是负数乘正数,积都为负数,积的绝对值等于各乘数绝对值的积。

追问3:正数乘负数、负数乘正数两种情况下的结论有什么共性?你能把它概括出来吗?

设计意图:让学生模仿已有的讨论过程,自己得出负数乘正数的结论,并进一步概括出“异号两数相乘,积的符号为负,积的绝对值等于各乘数绝对值的积”。既使学生感受法则的合理性,又培养他们的归纳思想和概括能力。

问题4 利用上面归纳的结论计算下面的算式,你能发现其中的规律吗?

(—3)×3= ,

(—3)×2= ,

(—3)×1= ,

(—3)×0= 。

追问1:按照上述规律填空,并说说其中有什么规律?

(—3)×(—1)= ,

(—3)×(—2)= ,

(—3)×(—3)= 。

设计意图:由学生自主探究得出负数乘负数的结论。因为有前面积累的丰富经验,学生能独立完成。

问题5总结上面所有的情况,你能试着自己给出有理数乘法法则吗?

学生独立思考后进行课堂交流,师生共同完成,得出结论后再让学生看教科书。

追问:你认为根据有理数乘法法则进行有理数乘法运算时,应该按照怎样的步骤?你能举例说明吗?

学生独立思考、回答。如果有困难,可先让学生看课本第29页有理数乘法法则后面的一段文字。

设计意图:让学生尝试归纳乘法法则,明确按法则计算的关键步骤。

例1计算:

(1)

;(2)

;(3)

学生独立完成后,全班交流。

教师说明:在(3)中,我们得到了

=1。与以前学习过的倒数概念一样,我们说

与—2互为倒数。一般地,在有理数中仍然有:乘积是1的两个数互为倒数。

追问:在(2)中,8和—8互为相反数。由此,你能说说如何得到一个数的相反数吗?

设计意图:本例既作为巩固乘法法则,又引出了倒数的概念(因为这个概念很容易理解),同时说明了求一个数的相反数与乘—1之间的关系(反过来有—8=8×(―1))。

例2 用正数、负数表示气温的变化量,上升为正,下降为负。登山队攀登一座山峰,每登高1km气温的变化量为—6°C,攀登3km后,气温有什么变化?

设计意图:利用有理数乘法解决实际问题,体现数学的应用价值。

小结、布置作业

请同学们带着下列问题回顾本节课的内容:

(1)你能说出有理数乘法法则吗?

(2)用有理数乘法法则进行两个有理数的乘法运算的基本步骤是什么?

(3)举例说明如何从正数、0的乘法运算出发,归纳出正数乘负数的法则。

(4)你能举例说明符号法则“负负得正”的合理性吗?

设计意图:引导学生从知识内容和学习过程两个方面进行小结。

作业:教科书第30页,练习1,2,3;第37页,习题1。4第1题。

五、目标检测设计

1。判断下列运算结果的符号:

(1)5×(—3);

(2)(—3)×3;

(3)(—2)×(—7);

(4)(+0。5)×(+0。7)。

设计意图:检测学生对有理数乘法的符号法则的理解。

2计算:

(1)6×(—9);

(2)(—6)×0。25;

(3)(—0。5)×(—8);

(4)0×(—6);

设计意图:检测学生对有理数乘法法则的理解情况。

《【精品】初一上册数学教学计划四篇.doc》
将本文的Word文档下载到电脑,方便收藏和打印
推荐度:
点击下载文档

文档为doc格式